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The initiation of sub-surface median cracks in glass during indenting and scribing is studied. It 
is shown that the zone of intense deformation under the tool introduces a weak singularity 
which may have a strong influence on crack initiation. When combined with a crack nucleus, 
which need only be of the order of the dimensions of the glass network, the weak singularity 
allows the threshold load for median cracking to be estimated. This estimate is shown to be in 
good agreement with experimental observations. The analysis explains the sudden transition 
from brittle to ductile behaviour in glass and also provides a possible explanation for the origin 
of the elusive "Griffith flaws". 

1. I n t r o d u c t i o n  
It is a familiar observation that glasses, and other 
solids which are normally thought of as brittle, 
may show ductile behaviour without cracking when 
indented, scribed or cut under very low loads. The 
threshold at which cracking occurs is thus of major 
importance if one is contemplating the ductile machin- 
ing or grinding of glass [1]. As a first step in attempting 
to predict the transition from ductile to brittle 
behaviour, we consider the initiation of a median 
crack under the indentor shown in Fig. 1. The com- 
pacted and sheared zone under the indentor, often 
referred to as the "plastic" zone, is enclosed sche- 
matically by the dashed line in the figure. The detailed 
mechanisms of deformation in this zone are still not 
well understood but it seems clear that the irreversible 
deformation occurs due to shear bands rather than 
homogeneous plastic deformation. The propagation 
of a median crack once it is initiated has been treated 
extensively in the literature using the methods of frac- 
ture mechanics. However, the question of initiation is 
more complex and has received less attention. 

The first model proposed for median crack initia- 
tion was based on pre-existing flaws [2]. However, the 
size of  the flaws predicted for some materials was so 
large that they should have been detectable. Another 
approach which does not invoke pre-existing flaws 
was then proposed by Hagan [3]. This model uses 
dislocations piling up on a shear band formed along 
the boundary of the plastic zone as the mechanism for 
crack initiation. In later work by Chiang et al. [4], an 
attempt was made to express crack initiation in terms 
of the size and geometric configuration of  the crack 
nucleus and the surrounding stress field. However, 
quantitative prediction of initiation was not obtained 
because of the uncertain nature of the crack nucleus. 

In this paper we take a different approach to those 
presented earlier for crack initiation. As a starting 
point we demonstrate that the intersection of two 
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shear bands introduces a weaker singularity than that 
due to a crack or Griffitb type of flaw [5]. We will refer 
to the weak singularity as an F-flaw to distinguish it 
from the Griffith or G-flaw so often invoked in linear 
elastic fracture mechanics. The order of the singularity 
for the F-flaw depends on the intersection angle of the 
shear bands and has a great influence on crack initia- 
tion. The only additional condition necessary for 
crack initiation is the presence of a crack nucleus 
along the future cracking plane adjacent to the F-flaw. 
As will be shown later, the predictions are quite insen- 
sitive to the choice of the nucleus dimension which 
needs only be of the order of the size of the open 
spaces in the glass network. This leads to the predic- 
tion of a traditional G type of singularity at the end of 
the crack nucleus. Because our work is motivated by 
an interest in processes in which an indentor is moved 
along the surface, such as scribing, machining and 
grinding, we use a plane strain analysis. This assump- 
tion is also implicit in Hagan's model [3]. 

2. A n a l y s i s  o f  crack  in i t i a t i on  d u e  t o  
F - f l a w s  

To begin with, we consider a pair of  shear bands, 
which intersect at a point on the median plane as 
shown in Fig. 1. The arrows in Fig. 1 indicate the 
direction of relative motion of the material along the 
shear bands and the direction of  shear forces, which as 
a result of the indentation load, act on each side of the 
shear planes. In reality, the chance that two shear 
bands intersect exactly at a point or along a line in a 
three-dimensional body is very small. Thus, the inter- 
section is developed when a longer shear band blocks 
the propagation of a shorter one. Because shear bands 
always form before crack nucleation, we first consider 
shear band intersection with no crack nucleation. We 
make a virtual separation along the shear bands and 
include both tangential and normal surface tractions 
as shown in Fig. 2. It is seen that the shear traction 
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Figure 1 Median crack initiation from two shear bands. The zone of 
intense compaction and shear under the tool is shown enclosed by 
a dashed line. 

acting on the lower part of the body produces a com- 
pressive stress along the median plane and the normal 
traction produces a tensile stress. The lower part of the 
figure corresponds to a V-notched body which accom- 
modates the relative slip along both of the shear 
bands. Thus, the presence of a crack nucleus at the 
notch tip will initiate a median crack if the tensile 
stress at the notch tip is large enough. This is exactly 
what one might have expected from Hagan's model if 
two shear bands and the total normal tractions were 
all taken into account. It is worth noting that Hagan 
[3] also pointed out the possibility of crack initiation 
due to the wedging action of the deformed zone, which 
is the first step to the understanding of F-flaws. 

In reality, shear bands are not straight and many 
intersecting points may form along the elastic/plastic 
boundary. Therefore, each intersecting point with a 
V-notch-like tip corresponds to an F-flaw which 
induces a singularity. Depending upon the stress field, 
F-flaws at different locations may initiate different 
types of cracking. In scribing or indentation, those at 
the bottom of the elastic/plastic boundary are respon- 
sible for median cracking and those at other parts of  
the boundary may be responsible for lateral cracking. 
F-flaws may also arise from the inhomogeneous struc- 
ture of materials. By contrast to G-flaws, the F-flaws 
may have more than two singular points in a two- 
dimensional body or singular lines in a three- 
dimensional body. The order of  singularity varies 
between one-half and zero. G-flaws may be considered 
as a special class of F-flaws whose singularity is exactly 
equal to one-half. The mechanism we propose for 
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Figure 3 A V-notch in a semi-infinite plane subjected to a remote 
uniform tension a T . 

sub-surface crack initiation is based on these F-flaws 
which may exist as the inhomogeneous structure or 
may be formed as a result of  the intersection of shear 
bands or other modes of deformation. 

As predicted by this mechanism, a sub-surface 
crack is initiated if the stress intensity factor for the 
F-flaw, combined with a crack nucleus with a dimen- 
sion of the order of the network spacing in the glass, 
reaches a critical value which is sufficient to produce a 
Griffith crack. We present here a simple approach to 
calculate the stress intensity factor. Consider a semi- 
infinite plate with a V-notch subjected to a remote 
symmetric loading as shown in Fig. 3. The depth of 
the notch, a, corresponds to the size of an F-flaw 
formed by two shear bands. The hoop stress ahead of 
the notch tip for 0 = 0 ~ can be expressed as [6] 

cro(r) = K P ( r )  p 1/(2~)1/2 (l) 

in which r is the distance from the tip, and p - 1, the 
order of singularity, is shown in Fig. 4 as a function of 
the notch angle. For a small virtual crack introduced 
at the notch tip, the expression for the stress intensity 
factor for an edge crack with an arbitrary crack face 
loading given in [7] may be used to yield 

Kj = (2/rg)l/2 I~" ~ o ( r ) ( A a  - -  r )  l/2dr (2) 

assuming that Aa as shown in Fig. 3 is much less than 
the equivalent length of the notch a. Equation 2 can 
also be derived for a centre crack [8] or any other 
crack configurations subjected to mode I loading 

Figure 2 Virtual separation along the two shear bands. 
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Figure 4 The order of  the singularities of  F-flaws as a function of the 
notch angle ft. 
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Figure 5 Ratios of K~/1(2io for F-flaws with different included angles 
and zXa/a ratio. 

conditions. Substitution of Equation 1 into Equation 2 
leads to 

KI = (2/~z)l/2 f~a [KP/(2%)i/2](r)p l (Aa  _ r) l/2dr 

= K p I 2  a(r)  p l/[~(Aa -- r) l/2]dr 

= Klo)~(fl)(Aa/a)P-'/2f(p) (3) 

where the weak stress intensity factor is defined as 

K(  = 1.122(fl)aT(rO'/2(a) ' p (4) 

and 

f ( p )  = F(p)F(1 /2) / [ rrF(p  + 1/2)] (5) 

K~o = 1.12o-T(rca) 1/2 (6) 

In Equation 4, o-nr is a uniform tensile stress, and 2(fl) 
is a parameter which increases slightly from unity as fl 
increases from zero. The quantity 2(//) may be esti- 
mated by comparing Equation 3 with results given by 
Hasebe and Iida [9]. When the notch angle fi = 0 ~ 
Equation 3 reduces to the conventional stress intensity 
factor. For  fl # 0 ~ the right-hand side of Equation 3 
is a function of both the order of the singularity and 
the Aa/a  ratio. In fracture analysis of a continuum we 
never need to consider the physical limitation on how 
small a crack can be made. However, for F-flaws the 
size of the virtual crack extension Aa may be as small 
as the dimension of the smallest possible crack nucleus, 
i.e. about 2 x 10-10 m (0.2 nm). Fig. 5 shows the ratio 
K~/K~o for F-flaws with different included angles. It is 
seen that the angle of the F-flaw has significant influ- 
ence on K~. For  scribing, the critical F-flaw size at the 
median cracking threshold in glass is typically about 
1 or 2 x 10-6m. The estimated K~ for this value 
of a and the value of Aa quoted earlier with fi = 110 ~ 
is about 43% of that for a crack of length a. It 
can also be seen in Fig. 5 that the estimated K~ is very 
insensitive to the value of Aa/a.  

As predicted by Equation 3, the stress intensity 
factor increases after crack initiation from an F-flaw 
and crack extension always follows. An analysis based 
on a crack instead of Equation 3 should be used to 
estimate K, if the extension of the crack is no longer 
small compared with the size of the F-flaw. 

3. Est imation of  crack init iation 
The plastic deformation under an indentor or a scrib- 
ing tool consists of shear and compaction which, as 
observed by Hagan [10], depends on the composition 
of the glass. In shear deformation the propagation of 
shear bands, as suggested by Ernsberger [11], may be 
achieved by finding a path through the ionically 
bound regions of the glass. The intersecting points of 
shear bands introduce F-flaws along the elastic/plastic 
boundary and the one at the bottom is most critical to 
median crack initiation. The intersection angle of 
shear bands after indentation by a Vickers indentor 
was found to be about 110 ~ [10]. As discussed in 
the Appendix, the fact that the intersection angle 
observed in glass is greater than 90 ~ may be explained 
by taking compaction into account. In this paper the 
intersection angle of the bands is taken as 110 ~ 

The pressure under indentors has been discussed 
at length for elastic, plastic and elastic-plastic 

behaviour. In the present case the formation of shear 
bands and compaction of glass will probably lead to a 
relatively uniform stress distribution such as is 
obtained for non-strain hardening plasticity. This 
assumption is also implicit in the work of Hagan [3]. 
Assuming that the two shear bands are straight and 
both the normal and shear tractions are constant 
along the shear bands, the normal stress, a , ,  acting on 
the shear bands shown in Fig. 2 may be expressed in 
terms of the shear stress and the hardness H (load- 
projected area of indentation). As shown in Fig. 6, this 
then allows the equivalent horizontal stress, o-t, to be 
written as 

~t = H -- "r/[sin(fl/2) cos (fl/2)] (7) 

We now consider the contribution of the vertical 
stress, H, shown in Fig. 6b to the stress intensity 
factor. Because no remote tension can be directly 
related to the vertical stress, a simple approximate 
analysis is presented here. Consider a semi-infinite 
plane with uniform vertical loading along the notch 
shown in Fig. 7 as field I. From superposition, field I 
can be obtained from field II and field III in Fig. 7. 
These two fields can be further decomposed into four 
fields shown in the lower part of Fig. 7. The singular 
stress field corresponding to the vertical stress H can 
be seen to be only due to fields IIb and IIIa. Stress field 
IIb leads to a horizontal stress ~t2 = - H .  It can 
be shown that the magnitude of the horizontal 
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Figure 6 A V-notch formed by two straight shear bands subjected 
to uniform shear and normal surface traction. 
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Figure 7 Determination of the equivalent horizontal 
component due to normal pressure H. 

component  for stress field I I Ia  is about  0.3H for 
fi = l l0 ~ [12]. The equivalent horizontal stress for a 
vertical stress H is thus at2 + o-t3 = - 0 . 7 H .  From 
Equation 7 the total equivalent horizontal stress for 
fi = 110 ~ becomes 

aT = 0 . 3 H -  2.13r (8) 

As mentioned earlier, the presence of a crack 
nucleus at the notch tip is a necessary condition for 
crack initiation. The source for crack nucleation is 
widely believed to be due to the intersection of shear 
bands, although other mechanisms such as open struc- 
ture and impurities in glass are also possible. Here we 
only consider the nucleation due to shear bands 
because the uncertainty involved in estimation of the 
shear stress in Equation 8 can be avoided. 

Whether or not a shear band is formed in glass by 
dislocations piling-up is still under debate [13, 14]. 
However, it is generally agreed that a shear band may 
act to produce crack nucleation in the same manner  as 
dislocations piling-up. Stroh proposed a criterion [15] 
for crack nucleation due to piled-up dislocations. This 
leads to crack nucleation on a plane at 70.5 ~ to the 
shear band. For initiation of a crack nucleus lying on 
the median plane, a slight modification of Stroh's 
analysis using the singularity solution leads to 

r 2 = 3~o:K(c /32L  (9) 

where L is the length of  the shear band shown in 
Fig. 1 and e is a correction factor for crack nucleation 
on the medium plane. For/3 = 110 ~ ~ is about  1.12 
and L = 1.23(2a) ~/2. Substituting Equations 8 and 9 
into Equation 3, the critical F-flaw size can be found 
to be 

act = A ( K , c / H )  2 (10) 

where A is a dimensionless constant with a value of 51 
for /3 = 110 ~ The fracture toughness for soda-lime 
glass in vacuum is about  0 . 7 6 M N m  -3/2 [16] and the 
measured hardness is about  5GPa.  The predicted 
critical F-flaw size is then about  1.2 x 10-6m. The 
threshold load for a moving Vickers indentor, for 
which the contact area is approximately half of  that 
for static loading, may be expressed as 

Pc~ = 2A2[K,~ /H]3K,~  (11) 
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With the same values for K~c, H and A, the threshold 
load is estimated to be about 0.014N. The threshold 
load obtained by Peter [17] is about  0.05N using 
optical observation on soda-lime glass scribed by a 
Vickers indentor with an edge leading. For  the same 
configuration using an indentor with an included 
angle smaller than that of  the Vickers indentor and a 
velocity of  about 1 cm sec-~ we have observed threshold 
loads between 0.015 and 0.022 N by using a scanning 
electron microscope to examine cleaved cross- 
sections. 

Because the prediction of the critical F-flaw size and 
threshold load is based on a plane strain analysis, the 
obtained results are expected to be more appropriate 
for scribing than indenting. 

4. Discussion 
The low fracture strength of bulk specimens of glass, 
the variability of  strength and the effect of  specimen 
size on strength are all consistent with the presence of  
pre-existing flaws of varying severity. However, these 
so-called "Griffith" flaws have never been detected 
directly and their origin has yet to be determined. The 
present analysis shows that sub-surface median cracks 
may be initiated from F-flaws as a result of  shear 
bands or other inhomogeneous deformation which 
introduces a weak singularity. Whether an F-flaw 
initiates a median crack is closely related to the local 
deformation or the inherent structure of  the material 
at the tip of  the flaw. A procedure is presented to 
estimate the initiation threshold from crack nuclei 
produced by shear bands. A curious but fortunate 
result is that the estimated stress intensity factor for an 
F-flaw shows a very weak dependence on the size of  
the crack nucleus. For example, for a three-fold 
increase in the dimension of the nucleus, the stress 
intensity factor estimated from Equation 3 changes by 
only 5% for fl = 909: The dimension Aa required 
to provide a stress intensity factor comparable to that 
of  a Griffith flaw of depth a is only several tenths 
of  a nanometre which is about  the size of  the open 
dimensions of the glass network: Thus, there is no 
difficulty in providing a crack nucleus. Threshold 
loads are remarkably low and could be exceeded in 
situations such as placing a glass plate on a flat surface 
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Figure 8 Permanent  deformation due to both shear and 

compaction. 

covered with dust particles or rubbing a glass surface 
with a cloth containing small particles. The median 
cracks produced in these cases would not be detected 
by surface examination. A question which needs to be 
answered is the extent to which these median cracks 
may grow if residual stresses are present and if water 
vapour can enter the crack. 

Finally, we note that the mechanism discussed 
provides a satisfactory explanation of the abruptness 
of the brittle-ductile transition which is observed 
when glass is loaded by smaller and smaller particles, 
as in erosior~ [18]. This is inconsistent with a pre- 
existing distribution of flaws but rather suggests that 
the flaws arise from the impact forces produced by 
erosion. 
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Appendix 
The observation that the intersection angle of two 
shear bands is larger than 90 ~ confirms that the per- 
manent deformation under an indentor undergoes 
both shear and compaction. 

In plastic deformation there is no volume change 
and the shear bands always intersect at 90 ~ . For soda- 
lime glass, however, the volume is not conserved if the 

pressure is high enough. Consider an element, as 
shown in Fig. 8, which is enclosed by two pairs of 
parallel shear bands. When the pressure in the vertical 
direction is high enough, compaction occurs which 
leads to an increase of the intersection angle, ft. It can 
be seen from Fig. 8 that the change of the volume 
from V 0 to V and the change of the angle/3 are related 
by 

( V o -  V)/Vo = 1 - c o s ( j 3 -  90 ~ ) (A1) 

It is of interest to note that the increase in the angle of 
the shear bands cannot be attributed to a "Coulomb 
type" increase of the shear stresses. This occurs 
in granular solids and results in shear bands which 
intersect at less than 90 ~ [19]. 
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